CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus

Cheng LabCRISPR/Cas + TALENEpigeneticsImagingSynthetic Biology + Genome Engineering
Patricia A. Clow, Menghan Du, Nathaniel Jillette, Aziz Taghbalout, Jacqueline J. Zhu, Albert W. Cheng
Nat Commun 13, 1871 (2022). https://doi.org/10.1038/s41467-022-29343-z
Publication year: 2022

Three-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and are ineffective in labeling non-repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method that allows for a nonrepetitive genomic locus to be labeled using one guide RNA. We construct Casilio dual-color probes to visualize the dynamic interactions of DNA elements in single live cells in the presence or absence of the cohesin subunit RAD21. Using a three-color palette, we track the dynamic 3D locations of multiple reference points along a chromatin loop. Casilio imaging reveals intercellular heterogeneity and interallelic asynchrony in chromatin interaction dynamics, underscoring the importance of studying genome structures in 4D.

CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus

Cheng LabCRISPR/Cas + TALENEpigeneticsImagingRepresentative
Patricia A. Clow, Menghan Du, Nathaniel Jillette, Aziz Taghbalout, Jacqueline J. Zhu & Albert W. Cheng
Nature Communications volume 13, Article number: 1871
Publication year: 2022

Three-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and are ineffective in labeling non-repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method that allows for a nonrepetitive genomic locus to be labeled using one guide RNA. We construct Casilio dual-color probes to visualize the dynamic interactions of DNA elements in single live cells in the presence or absence of the cohesin subunit RAD21. Using a three-color palette, we track the dynamic 3D locations of multiple reference points along a chromatin loop. Casilio imaging reveals intercellular heterogeneity and interallelic asynchrony in chromatin interaction dynamics, underscoring the importance of studying genome structures in 4D.

Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer

Cancer + MetastasisCheng LabCRISPR/Cas + TALENImagingRepresentative
Eunhee Yi, Amit D Gujar, Molly Guthrie, Hoon Kim, Dacheng Zhao, Kevin C. Johnson, Samirkumar B Amin, Megan L Costa, Qianru Yu, Sunit Das, Nathaniel Jillette, Patricia A Clow, Albert W Cheng#, Roel GW Verhaak# (co-corresponding)
Cancer Discovery, doi: 10.1158/2159-8290.CD-21-1376
Publication year: 2021

Oncogenic extrachromosomal DNA elements (ecDNAs) play an important role in tumor evolution, but our understanding of ecDNA biology is limited. We determined the distribution of single-cell ecDNA copy number across patient tissues and cell line models and observed how cell-to-cell ecDNA frequency greatly varies. The exceptional intratumoral heterogeneity of ecDNA suggested ecDNA-specific replication and propagation mechanisms. To evaluate the transfer of ecDNA genetic material from parental to offspring cells during mitosis, we established the CRISPR-based ecTag method. EcTag leverages ecDNA-specific breakpoint sequences to tag ecDNA with fluorescent markers in living cells. Applying ecTag during mitosis revealed disjointed ecDNA inheritance patterns, enabling rapid ecDNA accumulation in individual cells. Post-mitosis, ecDNAs clustered into ecDNA hubs, and ecDNA hubs colocalized with RNA polymerase II, promoting transcription of cargo oncogenes. Our observations provide direct evidence for uneven segregation of ecDNA and shed new light on mechanisms through which ecDNAs contribute to oncogenesis.

Live cell imaging of non-repetitive genomic loci

Cheng LabCRISPR/Cas + TALENImagingPatents
Albert Cheng, Patricia Clow
WO2021034585A1
Publication year: 2021