Synthetic BZLF1-targeted transcriptional activator for efficient lytic induction therapy against EBV-associated epithelial cancers

Cancer + MetastasisCheng LabCRISPR/Cas + TALENDiseasesEpigeneticsGene TherapyRepresentativeSynthetic Biology + Genome Engineering
Man Wu*, Pok Man Hau*, Linxian Li*, Chi Man Tsang, Yike Yang, Aziz Taghbalout, Grace Tin-Yun Chung, Shin Yee Hui, Wing Chung Tang, Nathaniel Jillette, Jacqueline Jufen Zhu, Horace Hok Yeung Lee, Ee Ling Kong, Melissa Sue Ann Chan, Jason Ying Kuen Chan, Brigette Buig Yue Ma, Mei-Ru Chen, Charles Lee, Ka Fai To, Albert Wu Cheng#, Kwok-Wai Lo# (co-corresponding)
Nat Commun 15, 3729
Publication year: 2024

The unique virus-cell interaction in Epstein-Barr virus (EBV)-associated malignancies implies targeting the viral latent-lytic switch is a promising therapeutic strategy. However, the lack of specific and efficient therapeutic agents to induce lytic cycle in these cancers is a major challenge facing clinical implementation. We develop a synthetic transcriptional activator that specifically activates endogenous BZLF1 and efficiently induces lytic reactivation in EBV-positive cancer cells. A lipid nanoparticle encapsulating nucleoside-modified mRNA which encodes a BZLF1-specific transcriptional activator (mTZ3-LNP) is synthesized for EBV-targeted therapy. Compared with conventional chemical inducers, mTZ3-LNP more efficiently activates EBV lytic gene expression in EBV-associated epithelial cancers. Here we show the potency and safety of treatment with mTZ3-LNP to suppress tumor growth in EBV-positive cancer models. The combination of mTZ3-LNP and ganciclovir yields highly selective cytotoxic effects of mRNA-based lytic induction therapy against EBV-positive tumor cells, indicating the potential of mRNA nanomedicine in the treatment of EBV-associated epithelial cancers.